Transcendence of formal power series with rational coefficients

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcendence of Formal Power Series with Rational Coefficients

We give algebraic proofs of transcendence over Q(X) of formal power series with rational coeecients, by using inter alia reduction modulo prime numbers, and the Christol theorem. Applications to generating series of languages and combinatorial objects are given.

متن کامل

Rational Transformations of Formal Power Series

Formal power series are an extension of formal languages. Recognizable formal power series can be captured by the so-called weighted finite automata, generalizing finite state machines. In this paper, motivated by codings of formal languages, we introduce and investigate two types of transformations for formal power series. We characterize when these transformations preserve rationality, genera...

متن کامل

On recognizable and rational formal power series

We will describe the recognizable formal power series over arbitrary semirings and in partially commuting variables, i.e. over trace monoids. We prove that the recognizable series are certain rational power series, which can be constructed from the polynomials by using the operations sum, product and a restricted star which is applied only to series for which the elements in the support all hav...

متن کامل

A new summation method for power series with rational coefficients

We show that an asymptotic summation method, recently proposed by the authors, can be conveniently applied to slowly convergent power series whose coefficients are rational functions of the summation index. Several numerical examples are presented. 1. Asymptotic summation Consider a power series ∞ ∑

متن کامل

ALGEBRAIC INDEPENENCE OF CERTAIN FORMAL POWER SERIES (II)

We shall extend the results of [5] and prove that if f = Z o a x ? Z [[X]] is algebraic over Q (x), where a = 1, ƒ 1 and if ? , ? ,..., ? are p-adic integers, then 1 ? , ? ,..., ? are linkarly independent over Q if and only if (1+x) ,(1+x) ,…,(1+x) are algebraically independent over Q (x) if and only if f , f ,.., f are algebraically independent over Q (x)

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 1999

ISSN: 0304-3975

DOI: 10.1016/s0304-3975(98)00256-4